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1 Nomenclature and List of Acronyms

Public

A Total heat transfer area; m?

Af Fins heat transfer area; m?

DH Hydraulic diameter; m

f Fanning friction coefficient; (-)

G Mass-flow per flow cross-section; kg/(s.m?)
H Channel height; m

k Thermal conductivity; W/(m.K)

L Effective length; m

Mass flow; kg/s

N Number of channels; (-)

Nu Nusselt number;

pressure; Pa

Channel Pitch; m

Pr Prandtl number;

Transferred heat; W

R Thermal resistance; W/(m?Z.K)

Re Reynolds number;

t Fin thickness; m

T Temperature; °C

U Over all heat transfer coefficient; W/(m2.K)
w flow velocity; m/s

w gas mass fraction

y gas mole fraction

Greek letters

A difference

p Density; kg/m3

U Dynamic viscosity; Pa.s

no Total surface effectiveness; (-)
nf Fin efficiency; (-)
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Acronyms and abbreviations

CAPEX Capital expenditure

FPM fins per meter

htc heat transfer coefficient, W/(m?.K)
LMTD Logarithmic mean temperature difference; °C
VVER water-water energy reactor
Subscripts

g gas

/ liquid

s solid

sat saturated
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2 Executive Summary

This deliverable deals with studies of the heat recovery exchanger of the project sCO2-4-NPP, specifically the
compact heat exchanger (CHX). This component forms an interface between the water/steam circuit of a
nuclear power plant and the dedicated sCO; loop for potential decay heat removal during accidental scenarios.
Extensive experimental work was performed to study thermal-hydraulic performance of such a heat exchanger
at relevant parameters (up to 285 °C / 7 MPa on the water side, up to 14 MPa / 270 °C on the sCO, side). For
this purpose, a unique experimental stand allowing natural convection water/steam flow equipped with a 27
kW boiler and CHX mock-up and coupled with the existing sCO, loop was designed, built and commissioned at
CVR. The CHX mock-up was fabricated and delivered to CVR by FIVES. In this report, the experimental layout
and results are presented and evaluated including an assessment of heat transfer and pressure drop
performance. Moreover, a design study of a large-scale (10 MW) CHX including CAPEX estimate is also
presented.
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3 Introduction

This document was made within the sCO2-4-NPP project [1], which aims to utilize the sCO; cycle as an
additional safety system, serving mainly in case of the station blackout (SBO) to remove the decay heat from
the nuclear power plants. Such a system primarily consists of a compact heat exchanger, turbomachinery with
coupled compressor and turbine and air cooled heatsink (schematically shown in Figure 1).

The subject of this document is mainly focused on the heat transfer between the steam and sCO;, which is
mediated by the Compact Heat Exchanger (CHX). The CHX forms an interface between the secondary circuit
of PWR (or the primary circuit of BWR) and the dedicated sCO; loop. This component should be able initiate
the self-propelling circulation on the steam side and have rather small size that the retrofitting into an existing
powerplant is possible.

</
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Figure 1: sCO; heat removal system attached to a BWR [2].

The heat transfer phenomena in the compact heat exchanger with sCO, and steam were previously studied
by [2],[3],[4], where the thermal-hydraulic performance of a small scale (<1 kW) compact plate heat exchanger
was experimentally tested and numerically validated.

During the sCO2-4-NPP project activities in work package 4, a new CHX preliminary design was developed by
FIVES [6]. This new design is based on brazed plates and fin heat exchanger technology and it should be capable
of transferring 10 MW of heat. Alongside a small-scale mockup version was fabricated, based on the same
channel geometry, in order to test and verify its thermal-hydraulic performance with wider operational
parameters. For this purpose, an experimental stand composed of a 27 kW steam generator, pipelines, CHX
mock-up and other necessary equipment was built and coupled with the exiting sCO, loop of CVR that ensures
testing at the relevant parameters.
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The biggest limiting factor with naturally driven condensation is the presence of non-condensable gases, which
significantly affect the heat transfer and often is neglected in thermodynamical analyses. According to [7] in
case of free convection (free stream velocity is zero) in the air-steam mixture with air concertation only 0.1 %,
the heat transfer decreases by about 32 %. The heat transfer decreases further with higher air concentrations
in the air-steam mixture. The reason for this is briefly that the non-condensable gases present in the steam
mixture start to concentrate along the core of the condensation channel, causing the concentration gradient
between the liquid water. Since the liquid water is undercooled, the non-condensable gases tend to diffuse
back and creating barrier for the water steam to condense.

Another study [8] shows the same effect during the forced convection (Rey = 4-10%) in a vertical tube, where
the presence of the non-condensable gas with a concentration of 1 % decreases the heat transfer along the
surface by about 20 % as it is shown in Figure 2. In this case, the vapor shear created by the free stream velocity
causes a thinning of the condensate film near the top of the vertical tube and thus enhancing the heat transfer.
Furthermore, it sweeps the gases from the heat transfer surface, hence reducing the local effect of the non-
condensable gases on heat transfer.

The water in the secondary reactor cooling system, where the CHX is intended to connect, contains some
amount of non-condensable gases, which are normally dissolved and can be released either by a decrease of
pressure or by a change of temperature leading to lower gas solubility. The primal source of the non-
condensable gases comes from the additives preventing corrosion, added in the cooling water. The cooling
water chemistry is strictly monitored, where for example the oxygen concentration limit in a VVER power
reactor is 0.005 mg/dm?3 [9], however there is no limit for nitrogen, which content can be about 15 Nml/kg
[10]. To ensure the proper function of the steam power cycle during the normal operation, the non-
condensable gases must be continuously vented from the condenser with vacuum pumps.

sCO2-4-NPP °- 847606 Page 9 of 34
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Figure 2: The axial profile of the average heat transfer coefficient for 16 mm diameter pipe for different non-condensable gas
concentration at inlet Re = 4-104 [8].
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4 Data collection for steam condensation in tiny

channels

4.1 CHX mock up design

To test the thermal-hydraulic performance of the CHX preliminary design a small mockup version was

fabricated. The channel geometry of the mockup heat exchanger is based on the preliminary design version
and itis present in Table 1. The mockup is 430 mm in length, 160 mm in width and height is 42 mm. It contains
4 passages for the steam and 3 passages for the sCO, [11]. There is a 1 mm thick separator plate between each

passage. The whole CHX mockup was fabricated from stainless steel 316L, it is shown in Figure 3.

Table 1: CHX mock up fin geometry.

CO; side fins

Steam side fins

Distributors | Exchange

Distributors Exchange

Thickness t (mm) 0.3
Type Plain
Height h (mm) 4

FPM p (Fins Per meter)

787.4

393.7

Fins geometry sketch
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’I”

Figure 3: CHX mock up.

4.2 Testing facility and experimental layout

The heat exchanger testing took place at Research Centre Rez (CVR) using sCO; experimental loop, which was
constructed within SUSEN (Sustainable Energy) project [12]. The sCO;loop is a large-scale experimental facility
in the form of a simple Brayton cycle with the heating power 110 kW, sCO, temperatures up to 550 °C,
pressure 25 MPa and mass-flow rate up to 0.3 kg/s. The facility has been used within various R&D projects
focused on the development of sCO, cycles and the components testing. The CHX mock-up was delivered by
FIVES to CVR and was implemented in the high-pressure part of the sCO, loop which corresponds to
appropriate location in the real sCO; cycles, shown in Figure 4.

For the steam side of the heat exchanger, an additional closed steam loop was fabricated, which can deliver
saturated steam at pressures up to 8 MPa (295 °C). The scheme of the steam loop is shown in Figure 5, where
the main part consists of the steam boiler with volume of 63 |, which is equipped with electrical heating rods
of the nominal power of 27 kW. The hot leg leading into the CHX mockup is equipped with additional heating
cords to ensure the steam enters slightly superheated. The hot inlet on the steam side is approximately 2.6 m
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above the water level in the boiler. The cold leg of the CHX mockup is connected back to the boiler under the
water level, closing the loop. There is an additional gas outlet connected to the cold leg of the CHX mockup,
allowing manual release of the accumulated non condensable gases. The water reservoir with a volume of 90 |
is decoupled from the high pressure during the operation and serves as a water storage, prior the operation,
when the high pressure side is vacuumed. Demineralized water was used for the experiments, which was kept
under a pure nitrogen atmosphere at constant 1.1 bar) pressure. The installed instrumentation with its
measurement error is listed in Table 2 and its position is illustrated in Figure 5. The overall view of the
experimental setup is shown in Figure 6.

The experimental stand was designed, fabricated and commissioned exclusively within the sCO2-4-NPP project
at CVR according to the relevant standards and quality requirements.

Pre-heater 20kw H1 <
max. 25MPa
max. 25MPa
Dt W3
30kw, 30kw
Low temperature HX1 High temperature HX2
max. 12,5MPa
max. 250°C CO2 inlet
Tested HX

Steam outlet

Main circulation pump
Water cooler
max. 12,5MPa

max. 550°C
Reduction valve

Steam inlet

CO2 samples withdrawal

Figure 4: Scheme of the experimental sCO; loop.
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F - FHow

P - Absolute Pressure
PD - Pressure difference
T - Temperature

T5,6,7

sCO2 loop )
connecting point /’ Heating cord 3x 350W

5 () @

Gas outlet e v
acuum
©eloy ua D<K o
eliev valve Degas pump Reliev valve
outlet
Drain2
= | &
Water reservoir Demister
[ o \
\/ Boiler
8 MPa
N % Electrical heating
Qin = 27 kKW
O,
Drainl
Figure 5: Experimental layout of the steam side.
Table 2: List of used instrumentation.

Variable Description Range Units Measurement error
T1-4 K-type thermocouple class 1 0-300 °C +1.5°C
T5-16 Pt100 class A 0-300 °C +0.35°C
F Coriolis flow meter 0-0.7 kg/s + 10% of measured value
PD1 Pressure difference transducer 0-5000 mbar + 4 mbar
PD2 Pressure difference transducer 0-500 mbar 0.4 mbar
P1-3 Absolute pressure transducer 0-400 bar 10.3 bar
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BT

o -

Figure 6: Experimental setup with connected CHX.
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4.3 Experimental results

During the experimental campaign, which lasted for 50 h, 20 steady state cases were measured. Each of the
inlet/outlet of the CHX mockup was equipped with 3 Pt100 thermistor, where the final temperature was
considered as an average of the 3 values. The measured temperatures for each case are presented in Figure 7
followed by measured absolute pressures, shown in Figure 8. The temperatures and pressures on the sCO,
were kept high enough from the critical point to ensure the super critical state. The measured inlet
temperatures on the steam side correspond with measured pressures at saturated states. On the steam outlet
a little undercooling with difference in average of 4.4 °C was measured over all cases. This undercooling would
correspond to significantly lower absolute pressures, considering there is only water/steam mixture. However,
the measured absolute pressure P2 at the steam outlet more or less matches the pressure P1, hence this
difference is considered to be the partial pressure of the non-condensable gases. Assuming the non-
condensable gases consist of pure nitrogen, its amount can be estimated as a mass fraction according to:

PN, (4-1)

2 Pmixture

Wo =Yy
Where the yy, can be expressed as:

(PZ - Psat(Tout,x=O)) (4-2)
P,

YN, =

Despite the efforts to get rid of the majority of non-condensable gases by boiling them off and venting them
out prior to the experiments at temperature of 120 °C and yet still significant amount remained. The mass
fraction of non-condensable gases is plotted as a function of the absolute pressure shown in Figure 9, where
a certain trend can be observed that with increased pressure, the fixed amount of non-condensable gases
decreases.

The sCO; mass flow is plotted in Figure 10, where the mass flow was kept in interval <90; 180> g/s. The
transferred heat was then calculated from the enthalpy balance and it is plotted in Figure 11, where the
maximum transferred heat reached almost a value of 18 kW. This point corresponds to a highest temperature
gradient between the steam inlet and sCO; inlet, which was 110 °C. The steam/water mass flow was calculated
from enthalpy balance and it is plotted in Figure 12. The measured pressure drops on the steam side and the
sCO; side are shown in Figure 13 and Figure 14 respectively.
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Figure 10: CHX mockup - experimental data. sCO, mass-flow.
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Figure 11: CHX mockup - experimental data. Heat transferred.
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Figure 12: CHX mockup - experimental data. Steam/water mass-flow.
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Figure 13: CHX mockup - experimental data. Pressure drop on the steam side.
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Figure 14: CHX mockup - experimental data. Pressure drop on the sCO; side.

4.3.1  Friction fanning factor on the steam side

The fanning friction factor can be determined from the experimental data with following equation [7]:

2AP D,

= (4-3)
L pgwg

The pressure losses during the natural convection condensation are also affected by flow conditions of the
cooling medium as it can be seen in [13]. In order to predict the fanning friction factor with sufficient accuracy,
following correlation based on dimensionless number was proposed:

n

Q (4-4)

m . 2
Reg mwg

f=c

Where C, m, n are constants, m is the mass flow, Q is the transferred heat, wyis the vapor velocity and Reyis
the vapor Reynolds number defined as:
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Re, = — (4-5)

The fanning friction factor was calculated according to equation ( 4-3 ) and correlated using the least square
linear regression method with proposed dimensionless numbers. The resulting correlation for the fanning
friction factor on the steam side during the natural convection goes as:

0.33

1 Q (4-6)
=254 ———— | ——
f Re;'41 m Wé

The comparison between extrapolated and correlated friction factor is shown in Figure 15. The correlation
field within the error band %15 %. is shown in Figure 16, where the absolute average deviation between
extrapolated and correlated data is 8.7 %.

@ f extrapolated @ f measured
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Figure 15: Fanning friction factor as a function of vapor phase Reynolds number.
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Figure 16: Correlation field between extrapolated and correlated fanning friction factors.

4.3.2 Heat transfer correlation

As it was previously discussed, the heat transfer coefficient is significantly affected by the presence of the non-
condensable gases in the water/steam mixture and its concentration. As well as the rate of the wall
temperature undercooling caused by the coolant medium. Heat transfer coefficient value also changed locally
that is not possible to capture by the available instrumentation. To estimate the average heat transfer
coefficient from the measured data, following process is used:

The overall heat resistance for steady state can be expressed as:

1 LMTD
m = T = Roverait = Rsteam + Rwau + Rco2 (4-7)
1 t 1
= + -
(Mo htc A)steam (kA wan (Mo htc A)co
Then the heat resistance on the steam side can be rewritten as:
LMTD t 1 1 (4-8)

R = _ —_ =
steam Q (kA)Wall (T)o htc A)COZ (770 htc A)steam

Then the heat transfer coefficient on the sCO; side can be estimated using the Gnielinsky correlation [14], it
goes as:

opoter I, (oo (& (29)
= . 1 + ~h o
Ty 12.7,/(§/8)(Pr2/3 — 1) ( L ) (Dh>
Where £ goes as:
& = (1.8log;oRe — 1.5)72 (4-10)
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Since the heat exchanger concept contains fins, the total heat transfer rate is evaluated through a concept of
total surface effectiveness no defined as:

A (4-11)
Mo = 1—(1—nf)7f
Where A is the fin surface area and A is the total surface area, the n¢is the fin efficiency defined as:
_tanh(h'X) (4-12)
N = h'X
Where X is defined as:
_ 2 htc (4-13)
| kgt

The value of h’ term for the CO, channel, which is sandwiched between the steam channels, where the
adiabatic plane can be considered in the middle of the channel, thus h’ = h/2 - t.

The fin surface area Aris considered as:

A =2(H—t)" LN (4-24)
Where N is number of channels and L is their effective length. The total area is considered as:
A=2(P—t)-L-N+A4 (4-15)
Finally, the heat transfer coefficient can be expressed as:
1 (4-16)

htc =

Rsteam (7]0 A)steam
Where the final value is reached after a couple of iterations due to the changing total surface effectiveness
term, where the first iteration is based on the initial guess of the htc. The extrapolated averaged htc values on
the steam side for each case are present in Figure 17.
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Figure 17: Extrapolated values of heat transfer coefficients on the steam side.

Now the Nusselt number on the steam/water side can be calculated as [15]:
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htc 7 13 .
Ny = Hi > (4-17)

3 <P1(Pl —pg)g

To account for the effects of the non-condensable gases and the cooling rate, while predicting the average
Nusselt number, a following expression was proposed:

Nu = C Re[™ Pr{* WP (Gcoolant>p (4-18)
g Gstean
Where C, m, n, o, p are constants, Res is the Reynolds number of the liquid phase, defined as:
Re, = &2 (449)
Ky

The thermophysical properties were obtained from the database NIST [16]. Using the least square linear
regression method, following constants were found to match the calculated average Nusselt number:

0.97
Nu = 1.221075 Re}*? PrP et w085 (—Gml'mt> o

Gstean

The comparison between extrapolated and correlated average Nusselt number is shown in Figure 18. The
correlation field within the error band +30 %. is shown in Figure 19, where the absolute average deviation
between extrapolated and correlated data is 10.2 %.
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Figure 18: Comparison of extrapolated and correlated values of average Nusselt numbers on the steam side as a function of
Reynolds number.
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Figure 19: Correlation field between extrapolated and correlated Nusselt numbers.
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5 Mechanical design strategy and final design of
the heat recovery exchanger

5.1 Final heat exchanger thermal, hydraulicand mechanical design and the estimated
performances

The CHX steam produced inside steam generator condense due to sCO; flow. The CHX is designed for a
specified heat transferred of 10 MW. The design idea (Figure 20) is a patent pending technology since it allows
heat exchange in a highly compact volume.

Fives Cryo achieved this goal by a double mechanical design strategy:

=> First, this patented configuration allows to bind the latent heat of the steam before confronting it to
the cold sCO,, allowing this way to control and optimally reduce the thermal gradients between fluids
to ensure the mechanical integrity and high resistance of the heat exchanger component,

A B c
sCO, outlet 4
a2 i 10036
(= — 36 T T
| || ) [ I
W MoRT 7
p
wwi
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AR [dh e
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T E,_ e
WW1 inlet i D) Laoet)
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= &fmﬁﬁ M
Tz -
131 0y
_%9 1026.2 13 E@ﬁ 3
WW1 outlet MORT
fa L@
\ . - E Tk v
{ W2inlet WW2 outlet g EEE Y | &) (2ol
Wz “
I ? 9 | & -
WW3 inlet WW3 outlet 143 |-
ECH 23 |
T i e [
Gond
I 710
() 7
—— 3021
Haa= |, n {%—1*
B 38
2000 2000 2000
sCO, inlet N éspassagss ___ T1passages Jﬁpa«s.slages

Figure 20: Schematic drawing of the fluids circulation inside the CHX. The water/steam fluid is decomposed into several sub-fluids
WW for Warm Water and CW for Cold Water ©Fives Cryo.

=>» And second, an important work was achieved on material selection according to the data available in
the literature. The first results, presenting a variety of metallic alloys specifically used for very high
temperature and pressure applications, needed to be crossed with the brazing procedure
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recommendations and the specific nuclear regulations, which tightened very quickly the field of
possibilities. The optimal choice for our application here is the Nickel based alloy N0O6690 / NC30Fe /
Inconel 690. All the specifications related to this material and the appropriate filler metal for welding
are reported in Deliverable 4.7. Nevertheless, before reaching the final step of manufacturing such an
equipment with this alloy, since Fives Cryo has no previous experience with brazing procedure of this
specific material, tests and lab experiments need to be achieved to ensure the adequacy of the brazed
joints with the requirements of the nuclear regulations. As explained in Deliverable 4.7, brazing is still
an assembly technique under assessment for acceptance by the nuclear regulations.

The CHX design was achieved to lead specifically to one very compact heat exchanger.
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HEAT EXCHANGER SPECIFICATION SHEET N° SCO2-4-NPP

fives

Public

CUSTOMER : SC0O2-4-NPP CONSORTIUM PROJECT : SC02-4-NPP F.C. ORDER N°:
ITEM : CHX LOCATION CUST. JOB N*
Design case PLANT SERVICE :  Nuclear power plant REGULATIONS: ASME + Mark-U Designator
STREAM ID  IN/OUT
FLUID W1 ww2 WWw3 CcWA1 cw2 coz
TOTAL FLOWRATE kals 472 4.72 472 472 4.72 3049
\VAPOR FLOWRATE IN kofs 472 0 0 0 [i} 3049
\VAPOR FLOWRATE OUT kgis 0 0 0 0 0 3049
LIQUID FLOWRATE IN kals 0 4.72 472 472 4.72 o
LIQUID FLOWRATE QUT kgis 472 4712 a2 472 472 0
& |OPERATING PRESSURE MPaa 8.18 817 816 8.18 8.17 20.18
% ALLOWABLE PRESSURE DROP kPa 4 4 4 4 4 50
TEMPERATURE IN “C 29658 2435 2114 192.4 168.6 82 66
TEMPERATURE OUT *C 192.4 168.6 150 2435 2114 286.57
SPECIFIED HEAT TRANSFERRED MW 9154 1.584 1271 1.101 0.862 10.003
CORRECTED MTD {GLOBAL) °C 68.611
FOULING FACTOR m KW 0 0 1] o L] o
CALCULATED PRESSURE DROP kPa 41/27 2112 19713 Ti/14 6.9/1.1 614/52
5 |SIMULATED INLET TEMPERATURE °c =CWwW1 out =CW2 out =WW1 out =WW2 out
% SIMULATED OUTLET TEMPERATURE “c 19247 168.60 1408 24357 21143 201.43
SIMULATED HEAT TRANSFERRED MW -8.132 -1.583 -1.457 1.101 0.881 10.19
DESIGN TEMPERATURE “C -30°C/300°C
DESIGN PRESSURE MPag k] 9 9 9 ] 23
HYDRAULIC TEST PRESSURE MPa g 17 17 "7 17 17 299
NUMBER OF UNIT : 1 WIDTH : 700 mm TYPE OF HEAT EXCHANGER: COUNTER-FLOW
NR OF CORES / UNIT : 1 HEIGHT : 5§12 mm TOTAL NR OF LAYERS/CORE: 101
TOTAL NR OF CORES : 1 LENGTH : 2000 mm (PARTING SHEETS (EXT. & mm): 1
NR OF PASSAGES / CORE 48 48 48 1 ih 38
EFFECTIVE PASSAGE WIDTH mm 628 628 628 628 628 628
Z |EFFECTIVE PASSAGE LENGTH mm 1026 143 143 166 131 1738
E TOTAL HEAT TRANSFER AREA m2 206 29 29 & 6 305
E TOTAL FREE FLOW AREA em2 1051 1051 1051 24 241 674
NOZZLE SIZE (NOMINAL) IN/OUT L] 150 80 80 80 80 80 80 80 80 80 125 2125
MANIFOLD SIZE (NOM.)  INJOUT mm
CONNECTIONS (NOM.)  INJOUT inch 6 3 3 3 3 3 3 3 3 3 5 2x5
TRANSITION JOINTS INFOUT
TO BE WELDED INJOUT X X X X X X X X hd X X X
] 1. Calculated pressure drops are considered at nominal flow rate x 1
2. Nozzle-to-nozzle frictional / gravitational pressure drop are indicated
3. Thermal design is based on customer chemical compositions and Refprop correlation
@ |4. 1 unit of 1 exchangers are supplied
§ 5. Material: stainless steel
B 2021/07/30 V.VOIRIN
A 2021/02/08 W VOIRIN
REV. DATE ISSUED BY APPROVED BY

Fives Cryo

wvw fivesgroup.com

following dimensions:

e Width: 700 mm
e Height: 512 mm
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Figure 21: CHX design datasheet ©OFives Cryo

It cannot be reproduced neither

The design achieved by Fives led to a single core, which specifications are detailed in Figure 21 with the
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e Length: 2000 mm
It is a counter-flow heat exchanger with a total number of layers of 101. The layers are distributed as follows:
e 38 layers for CO,
e 59 layers for steam
e 4 “dummy” layers, which are inactive layers, 2 on bottom stacking and 2 on top, to guarantee the
mechanical integrity of the heat exchanger cores.

Each layer has a height of 4 mm. Both CO, and steam/water layers contain “plain” fins but with different
geometries, as shown in deliverable D4.4.

The parting sheets between CHX core layers are 1 mm thick, external sheets are 4 mm thick.
This CHX design allows developing a total heat transfer area of 305 m?2 for CO; and of 278 m? for water steam.

In order to draw a performance map, a maximal operation case was also tested on this design to ensure the
capability of the CHX to operate under harsh conditions. The results are detailed in Figure 22.
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Cryogenics | Energy ﬁves

HEAT EXCHANGER SPECIFICATION SHEET N° SCO2-4-NPP

CUSTOMER : SCO2-4-NPP CONSORTIUM PROJECT SCO2-4-NPP F.C.ORDER N°:
ITEM : CHX | OCATION * CUST JOR N2+
Max case PLANT SERVICE :  Nuclear power plant REGULATIONS: ASME + Mark-U Designator
STREAMID  INJOUT
FLUID W1 Wwz Ww3 cwi CW2 coz
TOTAL FLOWRATE kagls 457 457 457 457 457 2573
'VAPOR FLOWRATE IN kagls 457 o 0 o a 2573
'VAPOR FLOWRATE OUT kagl's 0 o 0 o a 2573
LIQUID FLOWRATE IN kg's 0 4.57 457 457 457 ]
LIGQUID FLOWRATE OUT kg's 457 4.57 457 457 457 ]
& |OPERATING PRESSURE MPa & 749 748 747 748 747 2134
% IALLOWABLE PRESSURE DROP kPa 4 4 4 4 4 50
TEMPERATURE IN °C 200.77 244 2126 1978 167.4 80.98
I TEMPERATURE OUT °C 167.9 167.4 150.05 244 2126 280.51
SPECIFIED HEAT TRANSFERRED MW 879 1.58 1.266 0.968 0.915 9.743
CORRECTED MTD (GLOBAL) °Cc 66.367
FOULING FACTOR MW 0 o 0 o o ]
CALCULATED PRESSURE DROP KPa 43/-24 18712 1.8/-13 BT/14 65711 55.1/586
E‘» SIMULATED INLET TEMPERATURE C =CW1 out =CW2 out =WW1 out =WW2 out
'3 SIMULATED OUTLET TEMPERATURE *C 197.99 167.41 1398 24402 21268 28582
SIMULATED HEAT TRANSFERRED MW -8.789 -1.58 -1.458 0.967 0.916 9.944
DESIGN TEMPERATURE “C -30°C/300°C
DESIGN PRESSURE MPag 9 9 9 9 a 23
HYDRAULIC TEST PRESSURE MPag "7 T 1T 1.7 17 299
NUMBER OF UNIT : 1 WIDTH : T00 mm TYPE OF HEAT EXCHANGER: COUNTER-FLOW
NR OF CORES / UNIT - 1 HEIGHT : 512 mm TOTAL NR OF LAYERS/CORE: 101
TOTAL NR OF CORES 1 LENGTH : 2000 mm (PARTING SHEETS (EXT. 6 mm): 1
NR OF PASSAGES { CORE 48 48 48 11 1 38
EFFECTIVE PASSAGE WIDTH mm 628 626 ] 628 G28 628
g EFFECTIVE PASSAGE LENGTH mm 1026 143 143 166 131 1738
E TOTAL HEAT TRANSFER AREA m2 206 29 29 B 6 305
§ TOTAL FREE FLOW AREA em2 1051 1051 1051 241 241 674
NOZZLE SIZE (NOMINAL) INOUT mm 150 80 ] 80 80 80 80 80 80 80 125 2%125
MANIFOLD SIZE (NOM.)  INJOUT mm
CONMECTIONS (NOM.) INJOUT inch ] 3 3 3 3 3 3 3 3 3 5 2x5
[TRANSITION JOINTS INFOUT
TO BE WELDED IN/OUT X x X X X x x b X X x X
1. Calculated pressure drops are considered at nominal flow rate x 1
2. Nozzle-to-nozzle frictional / gravitational pressure drop are indicated
3. Thermal design is based on customer chemical compositions and Refprop correlation
@ 4. 1 unit of 1 exchangers are supplied
§ 5. Material: stainless steel
B 2021/07/30 V.VOIRIN
A 2021/02/08 V.VOIRIN
REV. DATE ISSUED BY APPROVED BY

Fives Cryo

This document is Fives Cryo's property, it is strictly confidential. It cannot be reproduced neither
transmitted without Fives Cryo's authorization

Figure 22: CHX maximal operating case design datasheet ©Fives Cryo
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Figure 23: General assembly drawing of the CHX ©Fives Cryo
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5.3 Costs

According to the drawings in section 5.2, the CHX component is composed of 1 core with the following
dimensions: L 2000 mm x | 700 mm x H 512 mm, for a core matrix volume of 0.72 m?3.

The corresponding costs, including the headers equipment, are detailed in Table 3.
Table 3: CHX costs details

TOTAL Costs of Material 237947
Manufacturing workforce

Fins manufacturing € 3000
Parts preparation & stacking € 27 000
Brazing alloy application € 13 500
Headers welding € 81541

TOTAL Manufacturing Workforce 125041

Subcontracting

Sheets cutting € 8500
Other parts cutting € 4000
Brazing in vacuum furnace €/unit 4825
TOTAL Subcontracting 17325
External purchase

Compression device € 4000
TRANSPORT € 1000

Design office / QC NPP regulation
Design office

€ 37120
Internal examination € 17000
External examination € 2500
TOTAL Design office / QC 3 56620
TOTAL CHX costs € 695000

Fives Cryo is still not equipped with the adequate stamping machine to be able to produce fins out of such
very resistant material as Inconel 690. The costs of stamping machine purchasing and adaptation of Fives
Cryo’s Workshop are also to be taken into account in case of manufacturing of a very low number of heat
exchangers. This aspect will be strongly dependent on the market opportunities that the studies achieved
during this project may open with the deployment of the sCO, safety cooling cycle.

Also, the raw material costs (bars, sheets for the fins production, cap sheets and separation sheets, headers
and nozzles, etc.) increased exponentially after the Covid crisis, and are still rising. Apart from the
manufacturing part, the material cost will be subject to an update at the moment of manufacturing the
equipment. Hopefully, when it is time, the economic crisis will remain behind us.
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6 Conclusion

The steam condensation in the tiny channels during the natural circulation was experimentally tested on the
representative heat exchanger mockup, based on the preliminary design of the CHX, at different flow regimes
corresponding with the real operating conditions. The experimental data also accounts for the presence of the
non-condensable gases, whose effect was already discussed in section 3. This effect as well as the correction
for the ratio of the flow coolant/condensate was considered and the heat transfer correlation was proposed.
The proposed heat transfer correlation fits the measured data with an average absolute deviation of 10.2 %.
Furthermore, the fanning friction factor during the condensation was extrapolated and put into the
correlation. The proposed correlation fits the measured data with an average absolute deviation of 8.7 %. The
gathered data can help to verify the numerical codes regarding the thermal-hydraulic design of the
condensers.

Fives Cryo compiled the available data and proposed the mechanical design strategy and the final design of
the CHX unit, based on their in house software. The corresponding drawings and the estimated costs are
included. However, there are still some challenges, such as brazing the suitable alloys to withstand the
operational pressures (22 MPa on the sCO; side), as well as meeting the requirements for the nuclear
standards.

Finally, it is recommended to consider adding the possibility to degas continually or periodically the non-
condensable gases from the multiple inlet/outlet tubing on the CHX unit, since there is a high possibility for
them to accumulate and prevent the proper functioning of the heat exchanger.
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